UNCLASSIFIED

AD NUMBER

AD011426

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

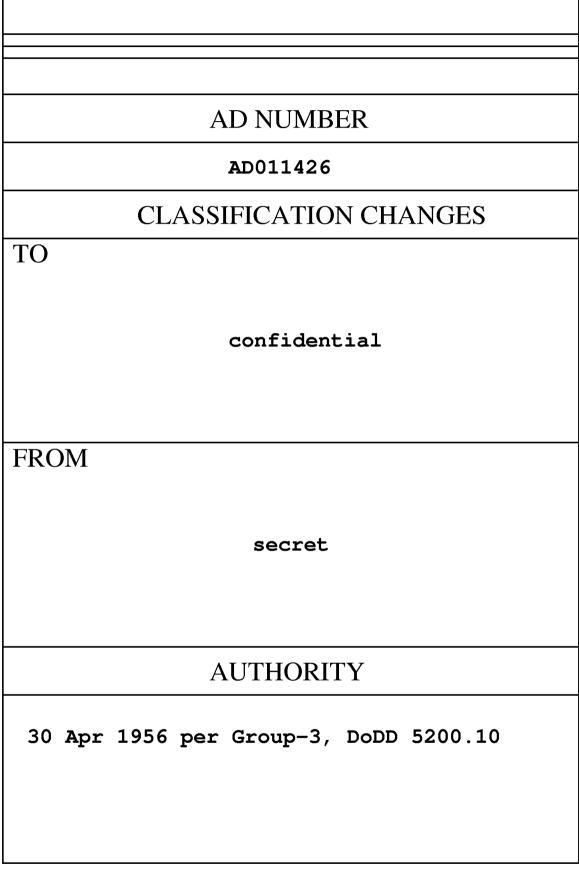
confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:


Controlling DoD Organization: Watertown Arsenal Labs. [Army], Watertown, MA.

AUTHORITY

Watertown Arsenal Labs [Army] ltr dtd 21 Nov 1979; Watertown Arsenal Labs [Army] ltr dtd 21 Nov 1979

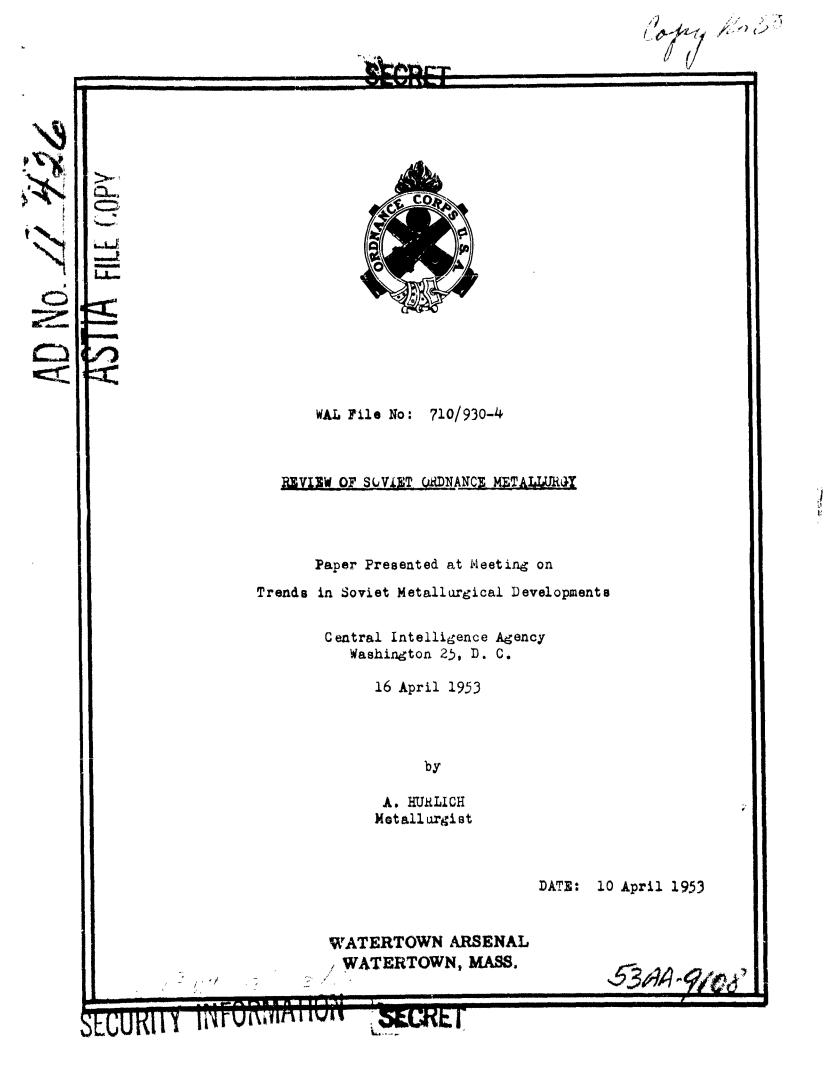
THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

THIS PAGE IS UNCLASSIFIED

Keproduced by

Armed Services Technical Information Agency DOCUMENT SERVICE CENTER


KNOTT BUILDING, DAYTON, 2, OHIO

SECRET

Best Available Copy

WAL File No: 710/930-4

Ŧ

REVIEW OF SOVIET ORDNANCE METALLURGY

Faper Presented at Meeting on Trends in Soviet Metallurgical Developments

> Central Intelligence Agency Washington 25, D. C.

> > 16 April 1953

Ъy

.

A. HURLICH Metallurgist

Date: 10 April 1953

- -

				r cecup	ity information				
Chief of Ordne	nce for prior whose offici	a pi Iali	ehow p provel interes	roposed of all (it in th	distribution, and forwarded in distributions. Proposed distrib s report is not abvious must be	ution to	-	nc iee	
BINDING AREA	FO	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	. ORDE	E-942 L.	(Rev.) 2 Sept. 1947		B	INDIN	AREA
Lippies 55			WA'	TERTON	ARSENAL ORT DISTRIBUTION	EXTRA C REMAINI		3	_
REPORT NO	TITLE	: R	eview	of So	viet Ordnance Metallurgy				
. TO:		to. of Cortes	DATE CCO APPROVAL	DATE Sent	TO:		NO. OF COPIES	DATE OCO APPROVAL	DATE SENT
MATERTONN ARSENAL-ORDRE		1			OTHER:				
· Author:	Ε	1			Commanding General Aberdeen Proving Ground				
ORDIR-Artillery ORDIN-Amenition					Aberdeen, Maryland Development & Proof Ser	vice	1		
ORDIT-Automotive ORDIE-Smell Arms					Ballistic Research Lab				
CROTE-Res . & Materiajs		2			Ordnance Museum, Col. G		1		
CEDTH-Amenition Dev.					Commandant, Ordnance Sc				
ORDTR-Artillery Dev. ORDTS-Small Arms Dev.					Ordnance Intelligence O Ordnance Board, Explosi				
. ORDTT-Tank Automotive					Ordnance, Disposal Divi	sion			
CRDTU-Rocint Dev.					Chief Bureau of Ordnance				
ORDIZ-AR - Executive Libr		1			Department of Navy				
ORDHANCE DEPARTMENT AGE	INC I ES				Nashington, 25, D.C.				
ORDER-PICETINNY Argenel		$\frac{1}{1}$			Nevel Proving Ground, Dah	lgren.			
ORDEC-Rock Island Araspal					Ve A A P Leb				
ORDED-EDFIDEfield Armory ORDEF-Materylist Arsenal		T			Armed Services Technical	Info			
CROBQ-Aberdeen Prov, Grou	box				Agency, Documents Servic	6			
ORDVR-Raritan Arsenal					Center, Dayton 2, Ohio				
· ORDER-Detroit Arsenal		1			Attn: DGS-SA		5		d
OCO-ORDER IN COL	ection	<u>.</u>							
and Dissemination	n Agency	30							
· · · · · · · · · · · · · · · · · · ·									
•									
APPROVING AUTHORITY:)					
Ltr.: Ordrange Corr	os Technica	1 I	nstru	ction a	200-1-51 and Change 2 there	to dat	ed		
- Date: 16 Ser From:	ptember 195	12							
			SEONE	T, SECUR	TTY MEORMATION				
*									
			,.						

1

I

REVIEW OF

SCVIET OHDNANCE METALLURGY

INTRODUCT ION

The bulk of the Soviet ordnance material which has been examined in this country consists of equipment which was manufactured prior to and during World War II. whatever equipment which may have been manufactured more recently than 1945 represents designs which were standardized before the end of World War II and were made from materials and by methods used prior to 1945.

The subject paper covers the examination of several Soviet tank and field guns, armor from JS II and T-34 tanks, kinetic energy armorpiercing ammunition of both steel and tungsten carbide core types, and high-explosive ammunition, most of which had been captured in Korea, while a certain amount had been recovered from German battlefields of World War II. The metallurgical and mechanical properties of this materiel will be covered, as will the more significant feature of design and manufacture. Insofar as available information permits, an evaluation will also be made of their performance characteristics.

I. Artillery

Four gun tubes ranging in caliber from 76 MM to 122 MM and representing both tank and field guns presumably manufactured during 1937-1944 have been examined by the Urdnance Corps. Common features of these weapons were simplicity of design and ruggedness. The breech rings and blocks were square cornered, had a minimum number of bosses, and these components as well as the tubes were rough machined on all non-critical surfaces. Critical surfaces such as chambers, forcing-cones, breech ring recesses for the blocks, and rifling were well machined and had surfaces comparable to those found in American equipment.

Generous fillets were observed in the interior re-entrant angles of the breech rings and in the rifling of the gun tubes; a very desirable practice in that it minimizes stress concentrations. All guns had monobloc tubes except for the 122 MM field gun which had a sleeve approximately one-third the length of the tube shrunk on the breech end of the tube. External threads on the sleeve of this weapon screwed into the breech ring, while the sleeve was pinned as well as shrunk to the tube. The 122 MM tank gun was designed so that most of its weight was at the breech end, thus minimizing the equilibration problem. This gun had a massive two piece breech ring, one end of which acted as the collar to hold the breech ring to the tube. The guns are, in general, of conventional design and have locking collars similar to those found in German World War iI guns. The 76 MM gun was fitted with a cast steel double baffled muzzle brake, see Figure 1. It is not certain whether this 76 MM gun was a tank or a field piece.

SECRET SECURITY INFORMATION

The chemical analyses and mechanical properties of the four guns and their components are listed in Table 1. The tubes of the 76 MM, 85 MM, and 122 MM tank guns are made from a Ni-Cr-Mo vanadium deoxidized steel having approximately equal amounts of nickel and chromium as alloying elements. American gun steels of the Ni-Cr-Mo composition generally contain at least twice as much nickel as chromium. The composition of the Soviet 122 MM field gun very closely approximates that of domestic weapons. The breech rings and blocks as well as the locking collars were made of wither Ni-Cr-Mo alloy steels. The only component made of unalloyed steel (except for residual quantities of ni, Cr, and Mo) was the cast muzzle brake on the 76 MM gun. A service survey of

The mechanical properties of the Soviet gun tubes and other components are, in general, comparable to those of domestic weapons which were manufactured during world War II. The notched-bar impact properties of these weapons at low temperatures are quite poor and are considerably below present standards. It must be borne in mind, however, that we had no low temperature toughness requirements in gun steel specifications with after the end of world war II, and American guns manufactured during that period were undoubtedly no tougner than the subject Soviet guns.

in general the components of the Soviet guns were made of steels of somewhat inferior quality as compared to American guns in that the steels contained relatively numerous non-metallic inclusions and more pronounced and coarser conduitic structures. Except for the 76 km tank gun's muzcle arake, all gun components were forged by conventional practices.

The relatively poor toughness of these weapons as revealed by low temperature notched-bar impact tests resulted from the incomplete quench arrighting of the components during heat treatment. Although, in some cases, this was the result of insufficient nardenability because of excessively low alloy content, the incomplete hardening generally was caused by a slow cooling rate during quenching, indicating that the gun components were quenched in oil or tarm water rather than drastically quenched in cold water.

The properties of the Soviet gun tubes are such that brittle fractures of the tubes and breech rings may be encountered in service, particularly at reduced operating temperatures, high pressures, and towards the end of the useful service life of the weapons.

11. Tank Armor

The Ordnance Corps's first contact with modern Soviet tank armor was in 1943 when two tanks were provided to this country by the Soviet government for performance tests at Aberdeen Proving Ground. These tanks were the T-34 medium tank and the KV-1 heavy tank. Sections, including

Security Information

welded joints, were cut from the hulls and turrets of these tanks and were sent to the Watertown Arsenal for metallurgical examination. The following observations and conclusions resulted from this study:

1. Four types of alloy steels were encountered in the armor sections; Mn-Si-Mo steels were employed for the thinner rolled armor sections, Cr-Mo steels for the thicker rolled armor sections, Mn-Si-Ni-Cr-Mo steels were employed for both rolled and cast steel components from 2" to 5" in thickness, and Ni-Cr-Mo steels were employed for some of the moderately thick cast armor sections. The silicon content of the Mn-Si-Mo and the Mn-Si-Ni-Cr-Mo steels was high, 1.0-1.5% Si, and there appeared no attempts at alloy conservation except in the case of the element molybdenum; the alloy content of all sections being more than sufficient to provide adequate hardenability.

2. The armor components of the T-34 tank, with the exception of the bow casting which was unheat-treated, were heat-treated to very high hardnesses (430-500 Brinell), probably in an attempt to secure maximum resistance to penetration by certain classes of armor-piercing projectiles even at the expense of structural integrity under ballistic attack. The armor components of the nV-1 heavy tank were heat-treated to hardnesses more nearly approaching American practice (280-320 Brinell).

3. The quality of the armor steels ranged from poor to excellent. Wide variations in production technique were indicated; some rolled armor components were well cross-rolled while others were virtually straightaway rolled. There was an extensive use of armor castings; the cast turret of the T-34 tank was of good quality while that of the KV-1 tank had excessive amounts of shrinkage and hottears in the section examined. The bow casting of the T-34 tank was very unsound and would have been rejected under American standards, see Figure 2.

4. The design of the welded joints was characterized by dovetailing such that the edges of the lighter plates were set into niches machined or flame-cut into the heavier sections so that the surfaces of the lighter plates were approximately flush with the edges of the heavier sections. This resulted in transmission of stresses from one armor section to another without subjecting the weld metal deposits to the full force of stress applications other than compression stresses. In many cases the weld joint designs were such that the weld deposit served more as a glue to hold the members together than as structural, stressbearing elements. Although the fundamental design of the joints appeared excellent, the fit-up, appearance, and execution of the joint design and welding was generally poor.

3

SECRET SECURITY INFORMATION

 $\{ i_1, \ldots, i_{n-1} \}$

5. Shallow penetration, poor fusion, severe undercutting, porosity, and cracking was observed in most of the welds and probably resulted from improper manipulation of electrodes which might not have had suitable operating characteristics. The sloppy appearance of the welds was indicative of poorly qualified weldors. Many of the welds looked as if the weld deposits were hastily thrown in to speed up production. These obvious defects, together with low strength and poor metallurgical structure of ferritic weld deposits, indicate that the welded joints would have poor resistance to severe shock.

6. Perritic electrodes were used for most of the welding, although austenitic weld deposits were also encountered. In some cases, ferritic and austenitic electrodes were used, apparently indiscriminately, in making some of the weld deposits; some of the beads being laid down with one type of electrode while other beads in the same weld were deposited from the other type of electrode.

The results obtained from the metallurgical examination of these early world war if Soviet tanks have been described in some detail since they are exactly the same as have been obtained from all examinations performed since then 5. Soviet tanks which were recovered in Germany after the end of world war 11, and on Soviet tanks which were captured in morea during 1950-1952. The Ordnance Corps has examined several Soviet JS-11 tanks which were found in Germany and several Soviet T-34 tanks from both Germany and Korea.

The metallurgical and mechanical properties of various armor sections of JS-11 and T-34 tanks are shown in Table 11 and the compositions of both austenitic and ferritic weld metal deposits in these tanks are shown in Table 111. Again, we encounter the Mn-Si-Mo, Mn-Si-Ni-Cr-Mo, and Ni-Cr-Mo armor compositions and very high armor hardnesses. Although molybdenum contents as high as 0.38% have been observed in Soviet armor, the bulk of the armor compositions have lower molybdenum contents in the range of 0.15 to 0.50%, with many having no more than 0.25%molybdenum. This element has an important function in reducing the temper embrittlement susceptibility of neat-treated medium to high alloy steels and is used extensively in domestic gun, armor, and projectile steels in amounts of 0.40 - 0.50%. The significantly lower molybdenum content generally observed in Soviet ordnance steels may be taken as a deliberate attempt at conservation of this element which is known to be not plentifully available in Soviet controlled lands.

Jome of the armor steels have surprisingly high toughness considering the very high hardness levels; but many of the armor steels, even the softest ones, are very brittle. In several cases, the use of unalloyed

4

Security Information

のないのである

and/or unheat-treated steels in such critical applications as turret rings, bow castings, and floor plates has been noted. Such components would be very brittle and are apt to fracture even when not directly impacted by projectiles. Unheat-treated hull floor plates would be very subject to shattering and splintering under mine attack. Since these conditions were observed in Soviet tanks presumably constructed during World War II when much of Boviet industry lay in ruins and when production had to be pushed even at the expense of quality, it cannot be safely assumed that the use of unheat-treated steels in critical tank applications is an approved Soviet practice. The Russians know too much metallargy to be deliberately guilty of such practices.

The very high hardness encountered in most Soviet tank armor has caused much annecessary concern regarding the relative bailistic performance of the hard Soviet armor and the softer American armor. Many people associate high hardness with high resistance to penetration. Although this is true, within limits, in the case of attack of armor by undermatching projectiles (i.e. caliber of shot is less than the thickness of the armor) particularly at low obliquities of attack, it is definitely not true when the armor is attacked by larger caliber shot at higher obliquities of impact. Competitive ballistic trials which have been conducted at ordnance proving grounds on both very mard and normally hard domestic armor and Soviet armor have established beyond question of doubt that in many cases, representative of actual battlefield attack conditions, very hard armor is distinctly inferior in resistance to penetration as compared to armor of more conventional nardnesses (280-320 Brinell).

Although welds in Soviet tanks are inferior in quality and much more brittle than corresponding welds in American tanks, this condition has not been a major factor in impairing the battlefield performance of Soviet armor. Poor joint fits, sloppy appearance, jagged and rough finishes should not divert attention from the fact that the Soviet tanks the ragged and battleworthy and require many fewer man-hours of labor and precision machine tools, jigs, and fixtures to construct than American tanks of corresponding offensive capabilities. In battle, the number of armored vehicles which can be fielded by a combatant is a vital factor in the outcome of the conflict - and the dissiant seem to have learned this lesson more rigorously than have we. It would be very interesting to compare, for example, the relative man-hours of labor and investment in machine tools to construct equivalent numbers of the American 76 Ma Jun Tank T41 and the Soviet T-34/85.

Typical samples of Soviet armor weld joints are shown in Figures 3, 4, and 5, which demonstrate the various evils of poor joint fit, weld cracks, shallow weld penetration, etc. as well as the fundamentally

5

Security Information

sound joint designs. Figure 5 is particularly interesting in that it shows a typical Soviet weld repair, this time in the welded joint between the lower glacis plate and the bow casting of a T-34 tank. A wide and deep crack several feet in length opened up in this ferritic weld, and repair of the crack was effected by depositing a small bead, using an austenitic rod, over the surface of the crack to hide it from view. It might be pointed out, parenthetically, that this tank did not become a battlefield casualty because of this glaring defect, but because an armor-piercing projectile was driven through its armor.

111. Armor-Piercing Frojectiles

٠.

A. Steel Projectiles

Soviet steel armor-piercing projectiles which have been captured in Korea as well as those which have been recovered from arious localities during World War II are characterized by the wide variety in designs which have been encountered. Basically, almost all of the shot which have been observed are of the monobloc, or AP, type; i.e. a shot without an armor-piercing cap, and the great majority have rather small explosive cavities of rather narrow diameter so that they are more properly classified as APHE projectiles.

Beyond this point, the similarity in design ceases. Some have rather sharp-pointed, ogival noses; some have flat noses; some have knobs of various shapes machined on their relatively blunt noses; some are fitted with windshields made of steel stampings to maintain a good aerodynamic shape; some have single copper rotating bands; some have two rotating bands; some are boat-tailed; some have cylindrical bases; some are deeply notched circumferentially forward of or behind their bourrelets, some have one and some have two such notches, and the notches come in a multiplicity of profiles and depths. Typical shot illustrative of these various design characteristics are shown in Figure 6.

This bewildering array of designs reduce, however, to a few basic concepts. It is postulated that Joviet AP shot are designed primarily for the defeat of highly sloped armor and are believed to be particularly effective against very hard armor of the type produced by the Joviets, as well as effective against armor under conditions of low ambient temperatures; where improperly heat-treated armor tends to be particularly brittle and sensitive to shock impacts.

Highly sloped ar...or, hard armor, and brittle armor all tend to be penetrated by a mechanism which involves the shearing out of a

6

Security information

disc or plug ahead of the attacking projectile. This type of penetration is most effectively achieved by a blunt nosed shot or by one which fractures in such a manner that a roughly cylindrical blunt missile results. Such a projectile tends to plug through armor along a path more nearly normal to the surface of the armor than the original line of flight of the projectile, i.e., the shot tends to straighten up and take a shorter path through the plate than an intact ogival nosed shot which tends to ricochet off the face of the armor. The function of the cap on the AFC type of shot is to reduce the forces on the nose of the shot and thus keep it intact; consequently, the Boviet shot are not capped.

It is inferred that the function of the circumferential grooves in the region of the bourrelet is to locate and promote fracture of the shot when attacking sloped armor targets, and thus convert ogival shot into the more effective flat-nosed shot. Against low obliquity armor, on the other hand, ogival nosed shot are more effective than flat nosed shot. Since the bending moment and stress concentration induced by the groove when attacking low obliquity targets is also correspondingly low, the grooved shot will not have a great tendency to fracture against such targets. The groove thus tends to make the shot more versatile; it does not degrade its performance against targets most readily defeated by sharp nosed shot, and improves the performance of the shot against targets most readily defeated by blunt nosed shot.

Information on the design characteristics, chemical compositions, and mechanical properties of typical Soviet steel armor-piercing projectiles is shown in Table IV. We again encounter the use of high silicon Mn-Si-Cr steels quite similar to those which are employed for armor except that the carbon content has been raised from the 0.25-0.30% level used in the armor steels to 0.32-0.38% carbon, and the element molybdenum has either been greatly reduced or eliminated from the shot steels. A Ni-Cr-Ho steel was, however, employed for the 122 MM AP shot which is the largest caliber shot studied, but even in this projectile the molybdenum content was only 0.22%. In several cases, the Soviet AP shot steels have insufficient alloy content to permit full hardening through the section upon quenching.

The shot bodies are heat treated by a quench and temper operation to maximum hardnesses in the range of Rockwell C 50, which is significantly softer than domestic shot which are fully hardened to Rockwell C 60-63, particularly in the forward portions of the shot. In addition, American shot are made from alloy steels containing approximatel, 0.50-0.60% carbon which permits the attainment of the very high hardnesses sought in domestic practice. Maximum hardnesses are desired

7

Security Information

in domestic shot to prevent deformation and fracture of projectiles on impact against armor, particularly against thick, low obliquity targets. Against highly sloped armor, it is found that monobloc, sharp ogived projectiles undergo nose fracture regardless of their metallurgical and mechanical properties and thus become transformed to relatively blunt cylindrical shapes which are, as a matter of fact, most effective against highly sloped targets. In view of the fact that ogival nosed shot undergo nose break-up against sloped armor targets, the circumferential grooves used by the Russians are not really necessary since the shot break up without them. The grooves may serve a useful purpose in APHE shot, however, by localizing the fracture in a region away from the explosive cavity and thus permit a high order detonation of the portion of the shot that gets through the armor.

In several cases the Soviet shot are heat treated to a uniform hardness of mockwell C 50 all over the shot body, although in the case of the 85 MM shot the hardness decreased to Rockwell C 25 at the base. In the domestic practice, it is usual to obtain maximum hardness ($R_{\rm C}$ 60-63) in the shot nose down through the bourrelet region to approximately Rockwell C 45 at the base. This practice is followed in order to impart sufficient toughness to the body section to keep it intact even though the nose may shatter.

Windshields on Soviet AF shot are generally made by deep drawing or stamping low carbon sheet steel into the desired shapes. Relatively pure copper is employed for rotating bands, which are generally of conventional design, although a copper alloyed with approximately 5% nickel has been observed as a rotating band material. This latter alloy may, however, be accidental rather than intentional.

Like the rest of Soviet ordnance material, steel AP projectiles show evidence of coarse machining and finishing on all non-critical surfaces, while rotating bands and bourrelets have surfaces comparable to domestic practice. Almost all Soviet equipment indicates the careful husbanding of manufacturing processes requiring complex and expensive machine tools and skilled labor. Where needed, however, good practices are employed.

B. HVAP Projectiles

This type of armor-piercing ammunition covers tungsten carbide cored projectiles in which tungsten carbide penetrators are fitted into carriers to permit firing from guns; the carriers accompanying the cores to the target, at which point the cores break out

SECRET SECURITY INFORMATIC.

of the carriers to perforate the armor. The carrier generally plays little or no part in the penetration of armor, serving only as a vehicle for the tungsten carbide core in the interior and exterior ballistic stages of flight. When, however, as in the case of Soviet HVAP shot, the carrier is heavy and much of the weight is behind the core, the carrier may act as a piston helping to drive the core through the armor and dishing out a large crater in the face of the impacted plate.

The Soviet HVAP projectiles which have been encountered in Korea are very primitive in design, looking almost exactly like the early German World War II arrow-head projectiles which were encountered in 1942 and possibly earlier. Figure 7 shows photographs of typical Soviet 45 MM, 57 MM and 85 MM HVAP shot. These three shot are similar in most of their design characteristics; all have soft steel bodies machined from unheat-treated low to medium carbon steel bar stock, see Table V. The windshields of these particular rounds are aluminum alloy sand castings whose inside contours fit over the ogive of the tungsten carbide cores and are screwed into the shot bodies, see Figure 8 for cross-sectional views of the carriers of the subject HVAP shot. The aluminum alloy windshields are similar in composition to two commonly used domestic sand-casting alloys, Alcoa 212 and 195. The cores are cemented into position by use of a litharge-glycerol cement.

In the case of a 76.2 MM Soviet HVAP shot, the windshield was made of a low carbon steel stamping attached to the shot body by grooves pressed into cannelures machined in the forward portion of the body. In this projectile the core was fixed into the body by crimping a lip of the body over the ogive of the core. The smaller caliber HVAP shot had integral steel rotating bands machined from the bar stock while the larger caliber HVAP shot had one and two rotating bands made from high purity copper.

Again, machining and finishes on non-critical surfaces are extremely rough; and all materials with, of course, the exception of the tungsten carbice cores, consist of non-strategic metals insofar as possible. The tungsten carbide cores are of uniform composition, containing approximately 90% tungsten, 6% carbon (sufficient to combine with all the tungsten to form WC), and approximately 4% nickel as the binder. It has been found in this country that cobalt is better than nickel as the binder in tungsten carbide cores; providing somewhat greater toughness and resistance to fracture. The use of nickel by the Russians may indicate a shortage of cobalt in the Soviet zone, or ell e an attitude that nickel bonded cores are good enough and the use of cobalt does not provide sufficient improvement to justify the use of the more strategic metal in this application.

American tongsten carbide cores have been made with as high $\epsilon : 16\rho$ sobalt as the binder, but recent research has shown that lower binder contents result in better overall penetration performance, with

SECRET SECURITY INFORMATION

possibly 5 to 8% cobalt being optimum. The Soviet tungsten carbide core composition is thus not too far away from what we are evolving to.

A significant difference between Soviet and American HVAP shot is in the size and weight of cores used in the various calibers of shot. As seen in Table V, the Soviet 45 MM HVAP shot has a core weighing approximately 1/2 pound, while the 57 MM, 76-2 MM, and 85 MM HVAP shot have cores weighing between 1 and 1.1/3 pounds; while the core to total projectile weights range from as low as 13% to a high of 30%. By way of contrast, the American 76 MM HVAP M93 shot has a 4 pound core and the 90 MM HVAP M304 shot has an 8 pound core, with the cores weighing 45% to 50% of the total weight of the shot. The very small size of the cores in the Soviet HVAP shot is well illustrated in Figure 8, which shows cross-sections of the bodies and windshields of the 45 MM, 57 MM, and 85 MM HVAP shot such that the cavities for the cores are revealed. The tungsten carbide cores for these shot are snown in Figure 9.

Photomicrographs of a typical Soviet tungsten carbide core are shown in Figure 10. The material is very porous and the grain size is extremely non-uniform, the structure containing scattered large grains interspersed with fine grains of tungsten carbide. The poor quality customarily observed in Soviet tungsten carbide cores is indicative of sloppy manufacturing practice.

In view of the light weight and arrow-head designs of Soviet HVAP shot, the range-velocity characteristics of these projectiles would be expected to be poor. Also, because of the low weight and consequent low kinetic energy of the tungsten carbide cores, the armor penetration performance of Soviet HVAP shot should be far inferior to that of domestic HVAP shot. Nevertheless, at short ranges the Soviet HVAP shot can readily perforate American tanks as we have learned in Korea.

IV. High Explosive Amnunition

The general appearance of Soviet high explosive ammunition is similar to that of comparable American munitions. In many instances, however, the Soviet shell have thicker walls than American shell, presumably to provide a greater mass of metal for fragmentation. As a matter of fact, the design of and materials employed in Soviet high explosive ammunition seems to stress fragmentation rather than blast effect; both mortar and artillery H.E. shell often having thicker walls and heavier weights of metal than corresponding types and calibers of American rounds.

Security information

A very noteworthy aspect of Soviet high explosive ammunition is the use of cast iron in both mortar and artillery H.E. shell as seen from the data shown in Table VI. The extreme brittleness of cast iron enhances the fragmentation characteristics of this material; a shell of cast iron may produce up to 20 times as many fragments upon detonation as a similar shell made from forged steel. The fragments recovered from one detonated 82 MM mortar shell are shown in Figure 11. This shell, for example, produced more than 10,000 fragments upon detonation. Although, of course, a very large proportion of these fragments are fines weighing less than 2 grains (approximately 7500 fragments are in this classification), a very large number of these fragments may be effective as casualty producing agents. Even very tiny fragments are capable of producing severe casualties as well as deaths as attested to by the surveys made by medical teams in Korea during the periods when field trials of experimental body armor garments were conducted prior to the standardization of this type of equipment.

The 82 hd Soviet mortar shell also produced approximately 1600 Fragments weighing from 2 to 5 grains, 850 fragments weighing from 5 to 10 grains, 700 fragments weighing 10 to 25 grains, and 100 fragments weighing 25 to 50 grains. Fragments in these weight ranges are particularly effective against personnel.

Competitive firing tests of the Soviet 82 MM cast iron and the American 81 MM M43Al forged steel mortar shell have been conducted at Aberdeen Froving Fround where the shell were detonated in the center of 1" pine boards arranged in semi-circles of 20 foot and 40 foot radii. The following results were obtained:

	82 MM Soviet <u>Mortar Shell</u>	81 MM American M43Al Mortar Shell
	201	radius
Total hits Total perforations	5891 1435	734 333
	401	radius
Total hits Total perforations	2 <i>5</i> 13 824	277 102

11

Security Information SECRET

いたいの間で

From these data, the Russian shell is shown to produce:

at 20 feet

8 times more total hits 4.3 times more total perforations

at 40 feet

9.1 times more total hits 8.1 times more total perforations

Number of Fragments or Density Per Square Yard From Main Spray

	82 Mri Soviet Cast Iron	81 MM American Forged Steel
	20' 1	adius
Total hits Total perforations	93.8 22.8	11.7 5.3
	40' 1	radius
Total hits Total perforations	20.0 6.6	2.2 0.8

The above data were extracted from an Aberdeen Proving Ground Memorandum Report by Colonel G. B. Jarrett, Chief of Library and Museum Branch, dated 28 November 1950.

The very neat trick employed by the Soviets in the selection of calibers should be pointed out at this time. If they capture stocks of our 81 MM mortar shell, they can return them to us by firing them from their 82 MM mortars. On the other hand, their 82 MM mortar shell will not fit our 81 MM mortar tubes.

To further belabor the point of the excellent fragmentation characteristics of cast iron shell, the Soviet 120 MM Mortar Shell, Mod. $0\emptyset 843A$ produces approximately 23,000 fragments upon detonation; approximately 10,000 being up to 2 grains in weight, 6,000 - 2 to 5 grains in weight, 3000 - 5 to 10 grains in weight, 2300 - 10 to 25 grains in weight, 900 - 25 to 50 grains in weight, 300 - 50 to 75 grains in weight, and 200 - 75 to 100 grains in weight. Truly an anti-personnel weapon of terrifying capabilities.

12

Security Information SECRET

The low strength (see Table VI) of cast iron does, of course, limit the performance of shell made from this material; and probably confines their use to lower pressure and hence lower velocity and shorter range gun and mortar tubes. Cast metal does, on the other hand, have the desirable characteristic of breaking up into chunky, almost cubic, fragments as can be seen in Figure 11. Fragments of this general shape have the most desirable range-velocity characteristics and are to be greatly preferred to long splinters such as are often produced from the sidewalls of forged steel shell.

As with all other Soviet materiel, the high-explosive ammunition shows rough surface finishes and coarse machining except on critical areas such as bourrelets and rotating bands.

GENERAL CUNSIDERATIONS

It must be borne in mind that the Soviet ordnance materiel described in this paper was mostly of world war II manufacture and represents design concepts which, for the greater part, were established as early as 1940-1942. It cannot be said with any certainty that these design concepts are, in all cases, still adhered to by the Soviets.

There have been recurrent rumors of the up-gunning and up-armoring of Soviet tanks, including the addition of more or less complex spaced armor on tanks designed to defeat chemical energy armor-defeating ammunition.

From a metallurgical point of view, it would appear that the Soviets have attained equality with this country in the matter of technical information but not in technological development or in skill and training of metals workers such as weldors, foundrymen and machinists.

The use of high silicon steels for many ordnance applications is unique with the Soviets. American ordnance steels rarely have more than 0.4% silicon, while the Russians use steels with as much as 1.5%silicon as one of the alloying elements. In one case where a high silicon bearing armor steel was produced by an American steel mill under Lend-Lease during World war II, the steel was very dirty, containing high concentrations of silicate inclusions, whereas the Russians have developed methods to produce reasonably sound high silicon alloy steels. Silicon is not a particularly desirable alloying element in steel, having only a moderate effect on hardenability and it has been found, in many cases, to embrittle steel which is tempered in the range

Security information

SECRET

of 250-300 Brinell. Its effect in very high strength steels (400-450 Brinell) may not be detrimental and may even be beneficial, witness the high silico-manganese spring steels. In any case, most of the high silicon alloy steels had sufficient quantities of other alloying elements such as manganese, nickel, and chromium present to provide adequate hardenability, so that the use of silicon did not seem necessary.

There appears to be a definite tendency to conserve molybdenum in Soviet ordnance steels, even though this element is almost a specific fortemper embrittlement. Of course, very high hardness steels such as Soviet armor and AP shot are not tempered at temperatures in which the embrittling precipitate forms, so that the need for molybdenum to cope with temper brittleness is greatly lessened as compared to American practice.

In many cases, the total alloy content of Soviet ordnance steels has not been too wisely selected; some components having more alloy than needed to provide adequate hardenability for the section sizes involved, and some not having sufficient alloy content. The same remark also applies, however, to many American ordnance steels employed in the early stages of World War II, but by 1943 most ordnance steels in this country were designed with attention to hardenability requirements in order to conserve the more strategic alloying elements.

In closing, it should be emphasized that this country could do well to emulate the Soviet practice of employing finely machined finishes only where needed. The same applies to high quality, carefully prepared welded joints, castings, and other metal products. Detailed attention to aesthetic appearances is costly, time consuming, and, throughout the history of man, is not known to have won a single war.

14

Security Information

.

Metallungical Preservice of Seviet Artillary Material

ſ				0			Charles Concelling					Physical		Properties		
											Y.S. 15		8	B.A.	~	(ft-108)
		U				ĥ		5	2	2	Offeet	T.S.ps:	15	2	- <u>1</u> 00/1	۲. ۲
		, ¥	18	2	5		1.27	1.61	F.	đ	0-111-6	141.6	15.2	8.0H	15.2	4°6
LICEN LOUP				Ţ							M-125.0	150.5	12.2	33.1	11.5	6.4
10412	Re Rine (Bear)	8		9	920	20	21	1.5	ភ	50.	95.4	125.9	1.11	51.6	15.3	5.3
			2			Ł	S.	ŝ	8	Å	50.0	89.1	18.6	27.2		2
	Br. Block	15		τų.		L.,		1.49	÷.	-0 ⁴ 5	81.J	6.011	19.0	52.9	29.21	
VE	Rubo	ja ja		9		<u> </u>	1.18	1.29	·23	đ,	B- 95.2	123.8	15.6	39.7	19.5	1
find and			!	}				•)		8-99.3	128.2	2.8	61.5	19.5	2.2
1011	Br. Blac	14.	10-	1	96		8	1.30	æ.	14	91.5	121.2	15.0	36.7	8.3	
(1010)		Ŧ	5	18	đ	210	1.43	1.52	-26	111	87.8	<u>119.6</u>	18.6		+ । ।	2
	Locking Coller	Ę.	r.	શ	120		2.	1.14	\$	III	0.17	115.0	0. ₹	5 .2	45.0	0.1
		YH1	6		K	8	1.61	2-1	8	10	B-136.0	159.0	16.0	41.2	1 1.91	0.5 '
DTOIL MUSSI	2011 1	5	ł	5					,		1136.0	158.2	13.3	37.4	16.5	
1021/22	R. Ring	Ş	2	35	80	310	2.71	1.39	.35	6	90.3	119.9	18.6	52.5	26.3 1	S
				1	ŝ	Ł	8.2	1.35	Ř	90.	9.46	122.2	J8.C	±. 2	36.5	-C
	Sleeve	ŝ	6		8	t.	8.	1.35	5	:03	92.8	121.8	<u>г</u> 8	53:0	1.1 1	2.2
	Ruha	S		X	Ko	8	1.46	1.47	ส	.03	B-106.8	136.3	16.2	1	30.5	E 9.0
		?	}					•			0.011-1	142.8	20.5	60.6	27.3]	T . 2.0
	R. Plac	2	5	R,	110.	.0 <u>3</u>]	8	1.23	8	31.	104.3	123.4	19.7	59.S	8 2	1-1-
	Br. Block	3	5			620-	1.43	1.45	\$	-03	106.5	124.6	.≠ &	<u>8</u>	39.1.]	5.1
R	Locking Collar	F	la.	R	023	620-	8	1.33	÷۴.	-135	•86.9	108.0	к. Ж	69.5	50	3.2
EI	Murrie Braha	38	8	35	-035	880-	8	ř.	6	1	0.49	92.8	23.2 5	#81		
													to flow lines	Inee	t	
			•		1	ļ				5 A			-			

* Contings. Theld Struggh and Tenedle Strungth 2000 F31.

VATERTOVN ARBENAL LABORATORY SECRET - SECURITY INFORMATION

VTN.710-3141

Pallenan we say and

II TIEVI

•

.

.

Components
Tank
and
AFLOF
Tank
joviet
뉭
Properties
<u>Metallurical</u>

														Mechani	Mechanical Properties	rties	
sovi et	Location of	Thickness and Type of			Cne	Chemical Composition	Compos	tion				Brinell	Tield Strength	Tensile Strength	El ong.	à.А.	Aupact Energy V-Kotch Charpy
fast		Aruor	IJ	MA	S1	'n	-	XI.	ч	위	>	Hardness	U.1%.pst	psi	Ŗ	v e	Ft. Lbs. at -40"?
ΠSf	Hull, side Nate	5" Cmat	.20	.83	1.18	.029	.027	2.72	1.56	•29	90.	1111	142,000	142,000	0	e	18
TISC	Huil, lower	3.4" Cast	¥.	97.	÷.	.026	.016	1.5	2.35	96.	\$	285	113,500	145,000	18.3	56.0	31.3
12 12 13 11 12 12	Turret, roof Jun Mantlet	4" Cast 1.25" Zolled 3" Cast	.20 .275 .265	538	1.59 .35 1.80	037 025 025	021 019	2.5 8. 7 .8	1.58 2.26 1.79	<u></u>	さささ	290 290	1 <i>5</i> 7,400 117,500 174,000	211,000 137,400 217,000	2.1 17.9 5.5	6.0 55.9 12.5	14 36.1 19
**	Hull, side Hull, lover	1.75° Rolled 1.75° Holled	.24 25	.24 1.29 .255 1.16	1.55 1.84	.014 013	.026 .021	.08 1.26	.08 1.09	•28 •28	9.9	450	163,000 196,500	225 ,0 00 22 9,800	10.7	39 . 4 43.6	16.1 4.2
** **	side Sponson floor Turret	0.8" Holled 3.25" Cast	.26	8.1	,	.020	.025	.09	.10	.19	13	212-241	87,000 175,000	119,000 206,000	16	47.6 5.8	2.5 15.5
****	Turret, roof Bow cesting Upper glacis Lover glacis	0.9" kolled 5" Cast 1.8" kolled 1.8" kolled		285 1.75 .24 1.21 .24 1.23 .24 1.23	2223	022 014 024	030 024 028	3888	3883	5 F 0	នុ ទ្ ខ្លួន	18 18 18 18 18 18 18 18 18 18 18 18 18 1	192,000 67,000 163,000 170,000	218,000 103,500 225,000 225,000	0.7 18.5 11.5	° ដូ ដូ	2.2 2.2 11.5
1.)4-85 51-76	Track shoe Track shoe	Casting Casting	1.24	1.24 13.90 .32 .75	88	.00. 200.	.105 .043	2. 2. 2.	5. 1	.05	11		59,000 63,300	119,000 90,900	34.5 24.0	35.0 42.0	

VATERTOVN ARSENAL LABORATORY

SECRET - SECURITY INFORMATION

.

.

WTN.710-3142

TABLE 111

.

Chemical Analyses of Weld Deposits in Suviet Tanks

	Weld Joint			Chein	ical C	caposi	tion			
Tank	Location	ပ	Wn	3i	S	2	C Mn Si S P Ni Cr Mo V	Cr	Mo	
IISf	Hull Sid e- Wall to upper <i>e</i> lacia	.205	1.07	•80	.022	• 032	.205 1.07 . 80 . 022 .032 11.55 19.53 .09	19.53	60 .	l I
IJSĹ	doof plate to turret	•24	.98	.95	•029	.032	.98 .95 .029 .032 9.68 15.81 .11	15.81	11.	ł
1.3 .	HacisPlates to Bow Cast- ing (Exterior)	• 08	.85	.85 1.32 .04029	ъ.	. • 029	ま	.25 .05	• 05	ł
т3 4	GlacisPlates ".125 to Bow Cast- ing (Interior)	.125	•86	.86 1.12 .039 .023	•039	.023	•+0	•31	. 31 .06	ł
т <u>Э</u> +	sponson side12 wall to upper slacis	.12	. 38	.88 .66 .03 .03	•03	•03	.63		•54 •25	ł
134	Hoof plate to turret	.165	. 90	. 64	•037	.165 .90 .64 .037 .032	.16	.13 .08	.08	ļ
	VATERTOVN ARSENAL LABORATORY	104	Z	R S R S	L A		RATO	~		

WATERTOWN ARSENAL LABORATORY SECRET - SECURITY INFORMATION

•.

WTN. 710-3143

.

TABLE IV

•

Metallurrical and Design Characteristics of Soviet AP Shot

					Cherry 4	دی احد	*;					
Projectile	Cosponents	Material	U	Ŗ	C MA SI S P NI	S	VHANTICAT COMPOSITION		5	Ŷ	<u>Hardness</u>	Design Characteristics
45 MM APRE-F Not UBE-2432	Body Windahiald Rotating Band	Steel Bar Stock Steel Stamping Copper		6.	-365 .93 1.37 .018 .037 .115 .47027 .023 	.018 .027	.037	11	1.32 .06	81	49-52 Rockwell C 159 Brinell 108 Brinell	Blunt nosed shot with steel windshield knurled to shot nose. Two V-notches around shot body at bourrelet. Single rotating band.
57 MM 42-02-271 Mod UB-22-271	Body Mindahield Botating Band	Steel Bar Stock Steel Stamping Copper	. 38 .98 1.64 .027 .022 .09 1.42 .03 .09 .29 .01 .035 .018 .09 .18 .03 95.03 cu, 4.48 B1, .13 Mn	- 29 54 54	1.64 .01 .48 111,	.027 .035	.022 .018 h	. 09	1.42		50-55 Rockwell C 123 Brinell 114 Brinell	Knob-headed blunt shot with steel windshield knurled to shot nose. Two wide T-notches around shot body, one above and one below bourrelet. Two rotating bands.
85.NH APER Nod UBR-3656	Body Rotating Band	Steel Bar Stock Copper	.32 .92 1.41 .034 .029 .22 1.17 .03 99.90 Cu	8. <u>इ</u>	14.1	₩C0.	.029	•22	1.17		<pre>{50 BockwellC at nose {25 BockwellC at base 100 Brinell</pre>	Sharp pointed ogival mosed shot with deep V-motch around body below bourrelet. Two rotating bands.
122 MM 4PHB-F Nod 38-4713	Body «Lindahi ald kotating Band	Steel Bar Stock Steel Stamping Copper		×	.29 .024 .009 1.19 2.35 .22 .004 .034 .009 03	400	600	61.1		25	50 Bockweil C 110 Brinell 118 Brinell	Same as 57 MM shot except for single rotating band.
			T O V SEC	N A RET -	OWNARSENAL LABORATORY SECRET - SECURITY INFORMATION	E N A	L L INFO	L A WATH	6 0 10 10	► <		wtw.710-3144

WTN. 710-3144

TABLE V

٠,

Metallurgical and Design Characteristics of Soviet HVAP Projectiles (Arrow-Head Design)

					Thyreon next	
		Weight	- <u>Top</u>			
Projectile	Component	Total	Total	Material	Chemical. Composition	Hardness
45 MM HVAP-T Mod UBH-24 JP	Complete Shot Carrier Carbide Core Windshield	1.15 1.15 .56 .13	7 3 63	 Steel Bar Stock Tungsten Carbide Aluminum Alloy Casting	.13 С56 Мл23 Si 89.23 W. 5.86 С. 4.01 Ni, .07 Со 1.90 Si, 9.76 Сu30 Fe, Bal. Al	 115 Brinell 86 4ockwell A 115 Brinell
57 KH HVAP-T Hod UB4-271P	Complete Shot Carrier Core Windshield	3.78 2.44 1.11 .23	100 65 6	 Steel Bar Stock Tungsten Carbide Aluminum Alloy Casting	.13 C, .51 Mn23 Si 89.53 M. 5.94 C, 3.50 Ni, .26 Co 1.84 Si, 8.26 Cu, 1.28 Fe, 1.18 Mg, Bal Al	 117 Brinell 85 Äockwell A 115 Brinell
76.2 AN HVAP-T	Complete Shot Carrier Core Follow-Tnru Flug Windshield Motating Band	6.71 4.96 1.07 0.13 0.18	100 73.9 4.9 2.7 2.6	 deel Bar dock Tungsten Carbide Steel Bar dock deel dtemping Corper	.39 C 76 Mn. .27 Si 88.64 W. 5.81 C. 4.45 Ni .81 C23 Mn11 Si .08 C. 46 Mn002 Si 99.94 Gu	 177 Brinell 84-08 auckwell A 385-675 Frinell 65 ^R rinell 89 Brinell
д5 њ. нидр-т нод Ива-365г	Complete Jhot Carrier Core Windshield Hotating Band	10.78 8.73 1.38 .67	100 81 6 13 13		.345 С57 Мл25 Si 89.77 W. 5.95 С. 3.37 Ni, .21 Со .42 Si, 2.27 Си40 Ре, Вяl. Al 99.89 Си	 156 Brinell 88 Mockwell A 55 Prinell 78 Mockwell 15-T
		V A T E R	2 N O E 2	2 2 2 0 E 7 A L	LABORATORY	

٠

WTN.710-3145

SECRET - SECURITY INFORMATION

.

14

1

ı

- ,

ī

.

i 1

•....

TABLE VI

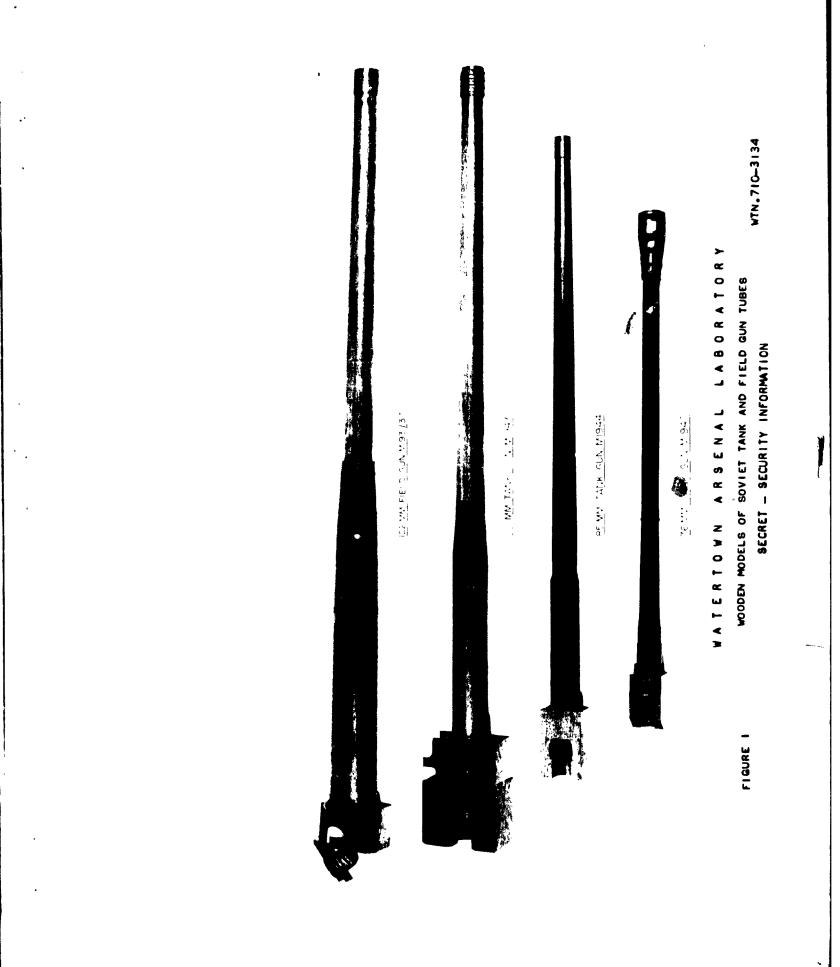
•

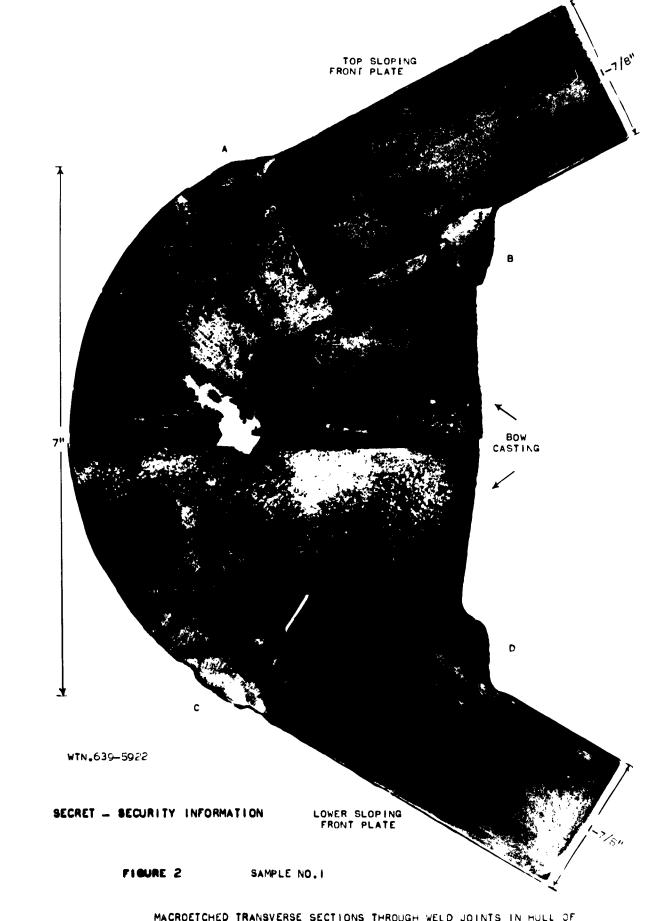
•

Metallurgical Properties of Joviet High Explosive Amnunition

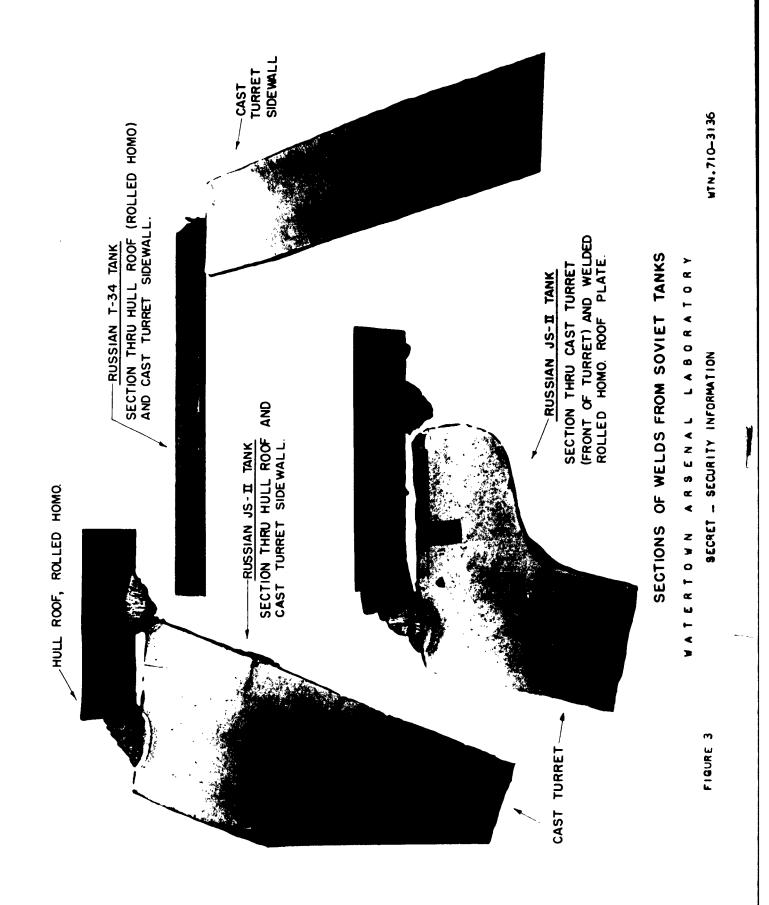
												Mechanical Properties	Proper	ties	
	hethod of			Chewi	cel Co	Chemical Composition	uo			Brinell	Yield Strength	Tensile	LA	1	Lapact Snergy
shell	<u>Hanufacture</u>	J	R	ji	C An 31 S	-		5	ŝ	Hardness	psi	psi			ft.lbs. at +70°F
76 NH HE Shell, Mod. 0-354	Cast	2. X	1.14	1.58	2 .94 1.1 4 1.58 .067 .099	660.	ł	I	• 05	200	25,000	37,000	2.0	1.8	2 . 8
76 NM HE Shell, Nod. 0-353	Cast	3.03	- 25	1.87	3.03 .92 1.87 . 055 .070	.070	ł	1	. 05	180	34,000	35,000	2.0	1	1.4
76 MK HE Shell, Mod. Unidentified	Forged	.295	.295 .53	•23	.23 .036 .0 62	.062	ł	ł	. 03	ł	73,000	103,000	22.0 57	57	29.9
122 NM HE SKell, Mod. ZH-462	Forged	89 .	66 •	•20	,20°.023	•027	ł	10.	ł	250	53,000	118,000	14	20	5•5
82 MM Mortar Shell, Mod. 0832D	Cast	3.25	54	.49 2.32 .081	.081	116.	60.	•00	ł						
120 MM Kortar Shell, Mod. 04843A	Gast	3.51	ц.	1.70	.51 1.70 .069 .207	•207	60.	п.	ł						

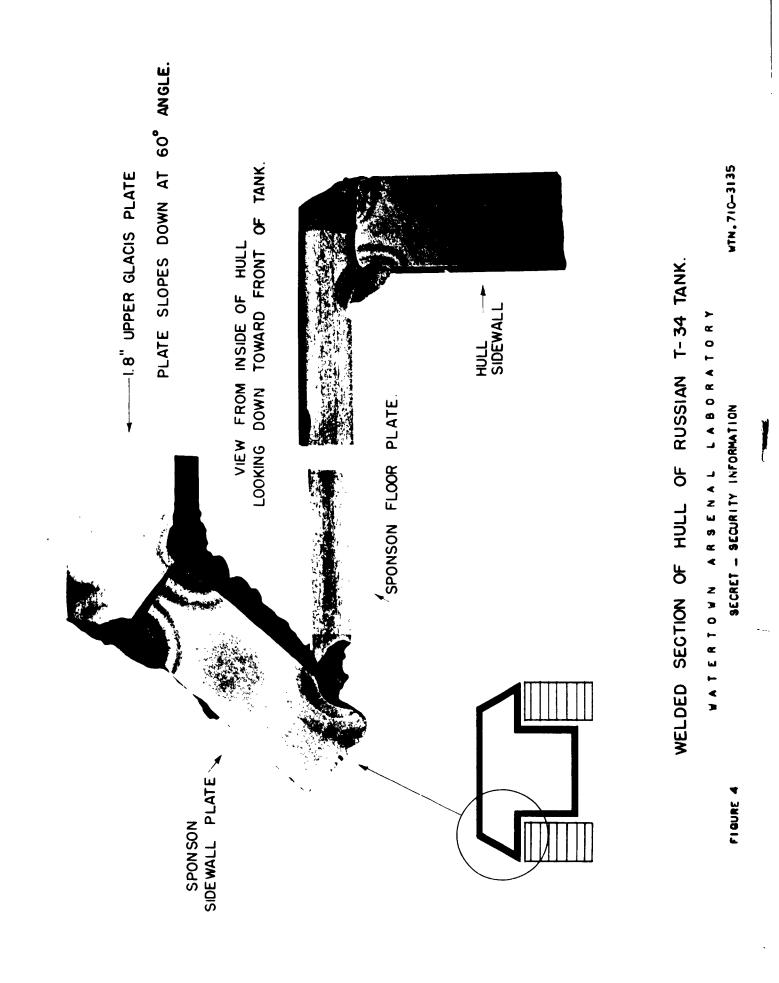
WATERTOWN ARBENAL LABORATORY

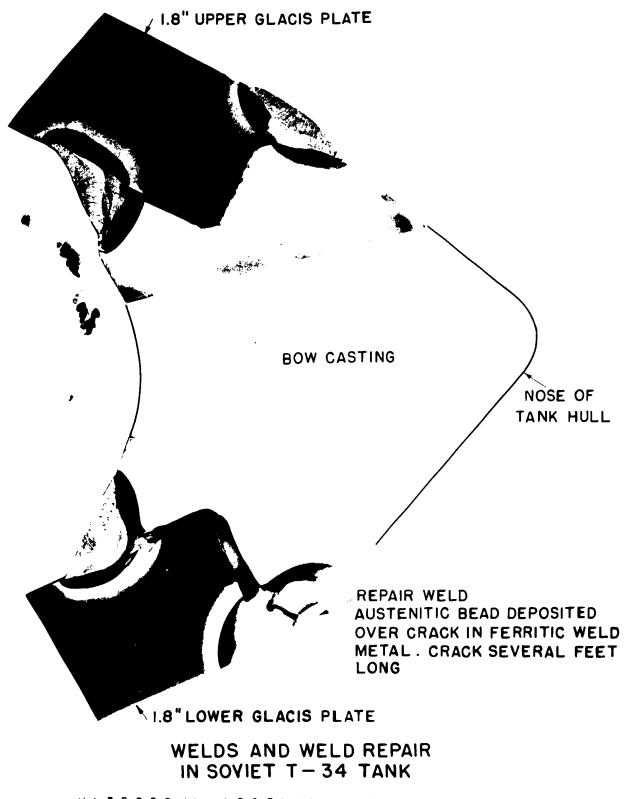

SECRET - SECURITY INFORMATION


ľ

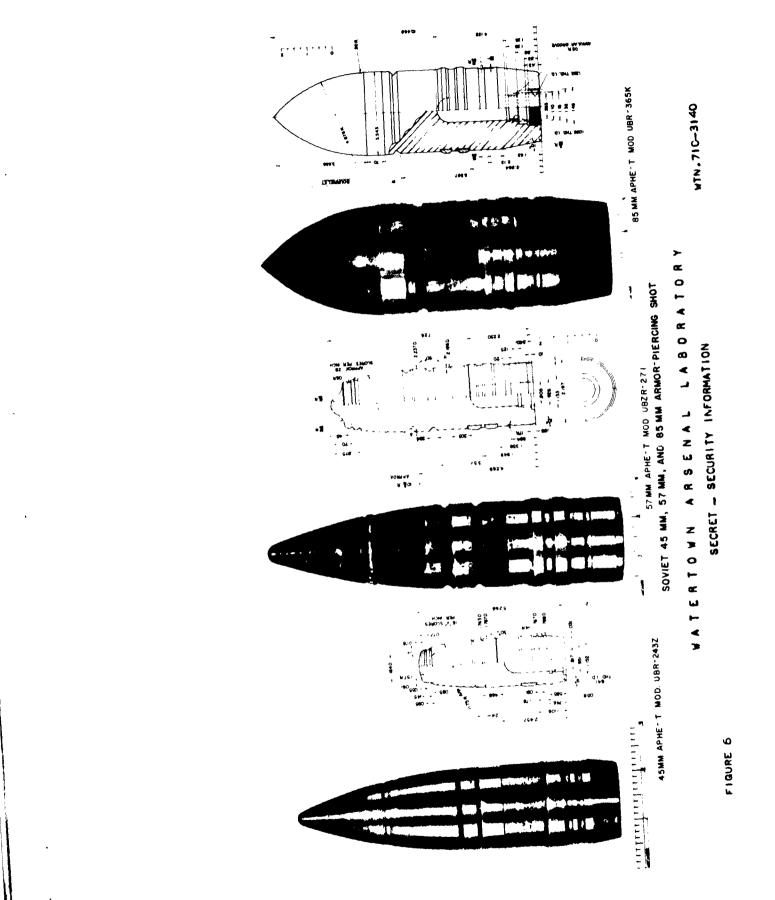
•

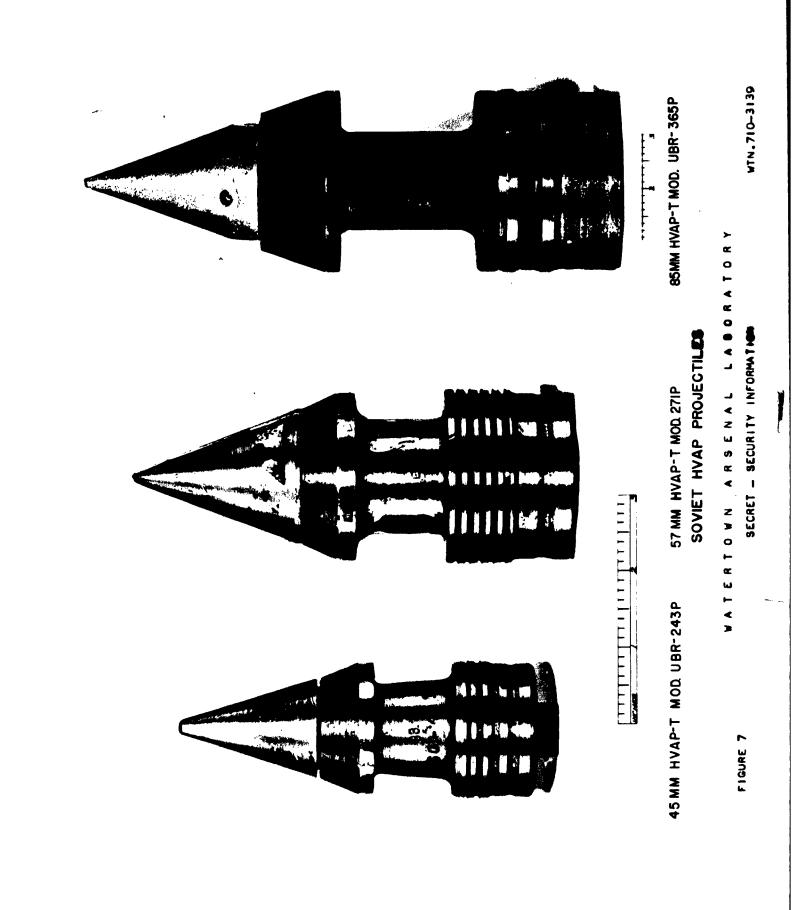

••

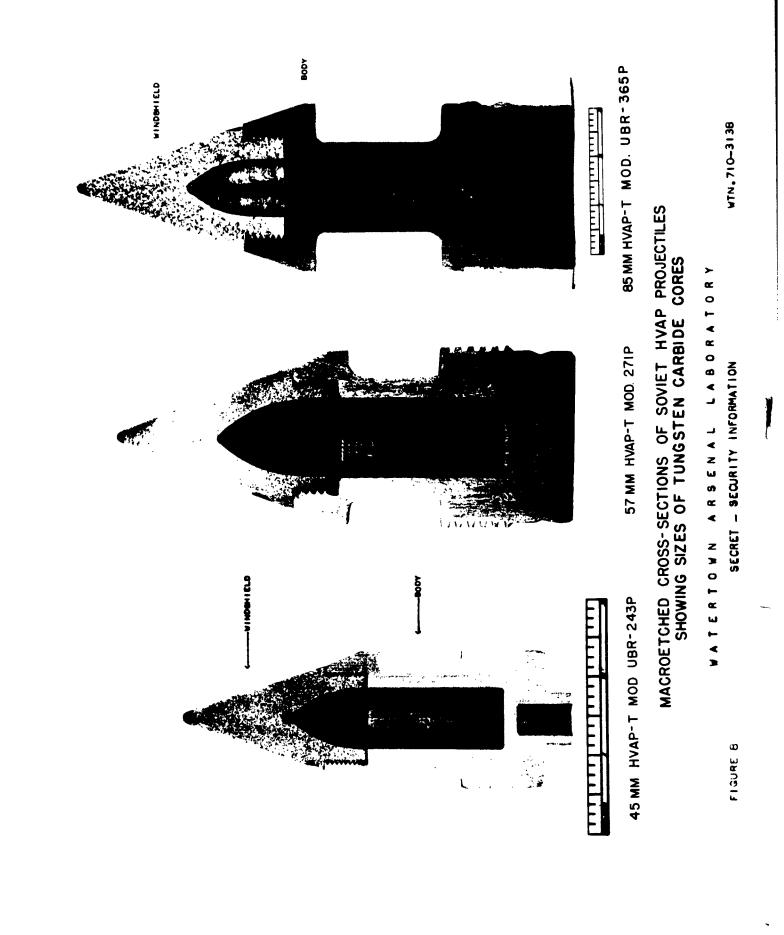

WTN.710-3146

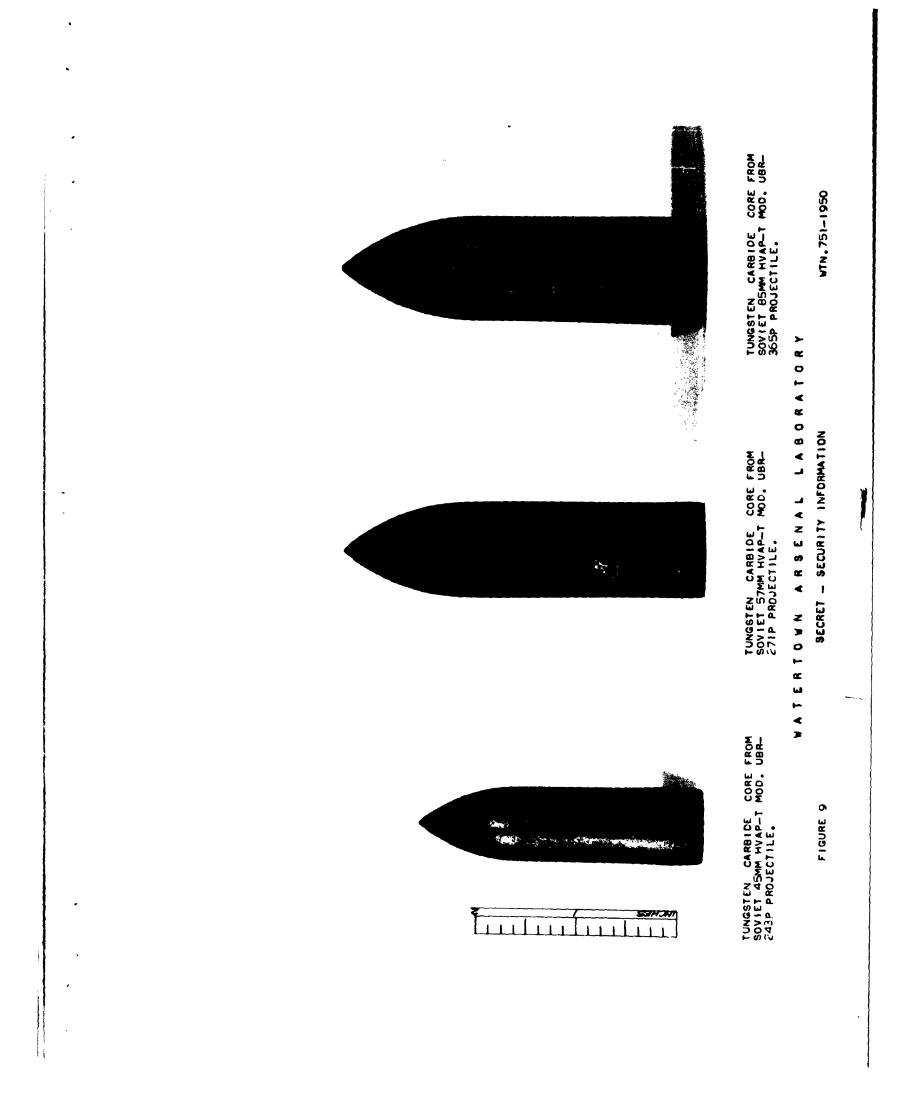


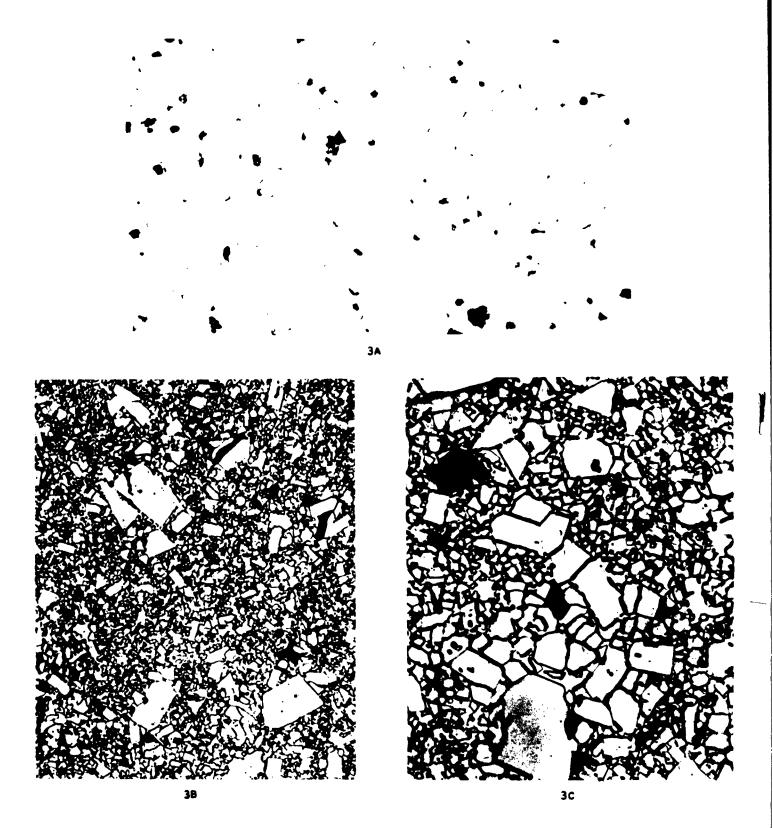
MACROETCHED TRANSVERSE SECTIONS THROUGH WELD JOINTS IN HULL OF RUSSIAN MEDIUM TANK T-34. SEE SKETCH A (APPENDIX A) FOR LOCATION OF JOINTS IN TANK STRUCTURE.

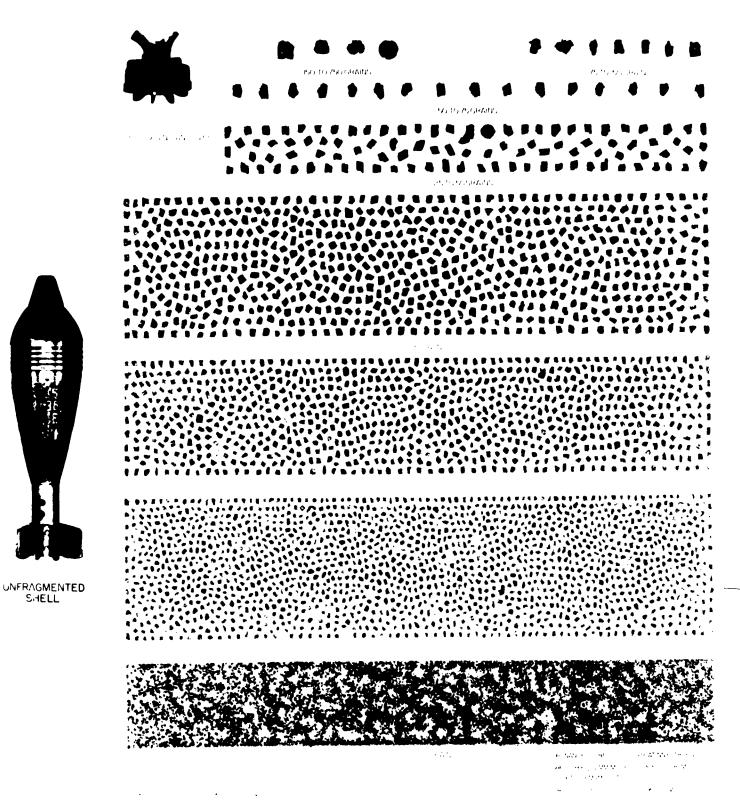



WATERTOWN ARSENAL LABORATORY


SECRET - SECURITY INFORMATION


WTN. 710-3137


FIGURE 5



WATERTOWN ARSENAL LABORATORY

CEMENTED CARDIDE CORE FROM SOVIET 76.2 MM HVAP SHOT - PHOTOMICROGRAPHS OF CORE NO. PM243-3 WIN.639-10,955 SECRET - SECURITY INFORMATION FIGURE 10

WATERTOWN ARSENAL LABORATORY

WTN.639-11,692

SHELL

SECRET _ SECURITY INFORMATION

FIGURE II